induced by this topology is denoted by xk(X). The spaces xcv(X) and kv (X) are defined simi-
larly.

1.1.2. The Lower Semifinite Topology. The Space AC(X). An open prebasis of this
topology is formed by the set C(X) \ C(X \ U), where U runs through the collection of all
open subsets of the space X. This is the weakest topology in which the sets C(F), where F
is closed in X, are closed. The set C(X) equipped with this topology is denoted by Ac(X).
The spaces Ag(X), Agy(X), Agy(X) are defined similarly.

1.1.3. The Exponential Topology. The Space ExpC(X). An open prebasis of this topology
is formed by the family of all subsets C(U) and all subsets C(X) \ C(X \ U), where U is open
in X. The set C(X) equipped with this topology is denoted by Expc(X). The spaces Expg(X),
Expcy (X)), Expgy(X) are defined similarly.

1.1.4. The Hausdorff Metric. The Space Mch(X). Let (X, p) be a metric space; Cb(X)
denotes the collection of all nonempty, closed, bounded subsets of X. For A;, A,6Chb(X) let

h(A[, Az) =lﬁf{8l8,>/0, A1CUE (Az), AZCUE(Al)},

where Uc.(A;) is an e-neighborhood of the set Aj; i =1, 2.

The function h satisfies all the axioms of a metric on Cb(X) and is called the Hausdorff
metric; the metric space (Cb(X), h) is denoted by Mcy(X).

In the case where X is a compact metric space the topology generated by the Hausdorff
metric on Cb{X) is equivalent to the exponential topology on this set.

2. Continuity of Multivalued Mappings. Some Operations on

Multivalued Mappings

A multivalued mapping F of a set X into a set Y is a correspondence assigning to each
point x€X a nonempty subset F(x) ¢ Y called the image of the point %, i.e., this is a single-
valued mapping F:X = P(Y). Henceforth any mapping F:X » P(Y) is called an m-mapping.

Let X, Y be topological spaces.

~1.2.1. Definition. An m-mapping F:X » P(Y) is called upper semicontinuous at a point
x6X if for any open neighborhood V of the set F(x) there is an open neighborhood U of the
point x such that F(U) c V.

An m-mapping F:X > P(Y) is upper semicontinuous if it is upper semicontinuous at each
point x€X.

We introduce the following notation:
F7(D)={x€X |F () D},
FU(DY={x6X|F(x)nD+ g}
1.2.2. THEOREM. The following conditions are equivalent:

(a) an m-mapping F is upper semicontinuous;

(b) for any open V ¢ Y the set F3'(V) is open in X;

{c) for any closed W ¢ Y the set FI'(W) is closed in X;
(d) for any D € Y we have F-3(D) o F-1(D).

1.2.3. THEOREM. An m-mapping F:X » C(Y) is upper semicontinuous if and only if it is
continuous as a mapping into xc¢(Y). :

1.2.4. Definition. An m-mapping F:X »> P(Y) is called lower semicontinuous at a point
x€6X if for any V ¢ Y such that F(x)(V==&, there is an open neighborhood U of the point x
such that F(x)\V+#& for any x’€U. An m-mapping F:X » P(Y) is called lower semicontinuous
if it is lower semicontinuous at each point x€X.

1.2.5. THEOREM. The following conditions are equivalent:

(a) an m-mapping F is lower semicontinuous;
(b) for any open V ¢ Y the set FI'(V) is open in X;
(c) for any closed W ¢ Y the set Fy'(W) is closed in X;
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(d) for any I ¢ Y we have F;’djk:FE?TZB;
(e) for any A c© X we have F(A)CF(A)

1.2.6. THEOREM. An m-mapping F:X - C(Y} is lower semicontinuous if and only if it is
continuous as a mapping into Ag(Y).

1.2.7. Definition. If an m-mapping F:X » P({Y) is upper and lower semicontinuous, then it
is called continuous.

1.2,8. THEOREM. An m-mapping F:X » C(Y) is continucus if and only if it is continucus as
a mapping into Expc(Y).

1.2.9. Definition. An m-mapping F:X - C(Y) is called closed if its graph
I'r={{x, YEX XV |yeF (x)}

is a closed set in X x Y.

1.2.10. THEOREM. The following conditions are squivalent:

a} an m-mapping F is closed;

b) for any pair x6X, y€Y such that y6F(x),there exist neighborhoods U(x) of the point x
and Y(y) of the point y such that F(U(x))NV(y)=9;

¢} for any filters {x.j<X, {y.}=Y such that x,—>%, Y.6F(%.), Yo—>y, we have y€F(x). {In the

case.of metric spaces it suffices to consider ordinary sequences.)
Thera is 3 close relation between closed and upper semicontinuous m-mappings.

1.2.11. THEOREM. 1If an m-mapping F:X > C(Y) is upper semicontinuous and the space Y is
regular, then F is closed. If an m-mapping F has compact range, F:X » K(Y), then in this
assertion the condition of regularity of Y can be relaxed: it suffices to require that it be
Hausdorff.

1.2.12. THEOREM. If F:X » K(Y) is a closed locally compact m-mapping, then it is upper
semicontinuous. »

We note the following properties of closed and upper semicontinuous m-mappings.

1.2.13. THEOREM. If an m-mapping F:X » C(Y) is closed and A6K(X), then F(A4)eC(Y).

In the case where Y is a metric space it is possible to give the following simple cri-
teria for the various types of continuity of m-mappings.

1.2.15, THEOREM. For upper (lower) semicontinuity of an m-mapping F:X->K(Y) at a point
x¥6X it is necessary and sufficient that for any € > 0 there exist a neighborhood U{x) of the
point x such that F(x') ¢ Ug(F(x)) [respectively, ¥(x) = U (F{x')] for all x'€U(x).

1.2.16. Definition. An m-mapping F:X » Cb(Y) is called continuous in the Hausdorff
metric if F is continuous as a mapping into the metric space {(Cb(Y), h).

1.2.17. THEOREM. An m-mapping F:X » K(Y) is continucus if and only if it is continuous
in the Hausdorff metric.

Some operations on multivalued mappings and the properties of continuity connected with
them are described below.

Let X, Y be topological spaces; let{fﬂbeh F}nY—>P(}3 be some family of m-mappings.

1.2.18. THEOREM. a) Suppose the m-mappings Fj are upper semiceontinuous. If the set
of indices J is finite, then the union of m-mappings UFpX—=P(Y),
i

(U Fj(x)= U F;(x),
ies ies
is upper semicontinuous.

b) Suppose the m-mappings Fj are lower semicontinuous. Then the union UF; is lower
semicontinuous. gt

¢) Suppose the m-mappings Fj:X » C(Y) are closed. If the set of indices J is finite,
then the union Y FpX—C(Y) is closed.
ies
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1.2.1¢. THECREM. a) Suppose the m-mappings Fj:X » Y, ave upper semicontinuous. If
the set of indices J is finite, the space Y is normal, anc ”‘F}{x;;";r VxeX, then the in
cursection of m-mappings {5 ;—»-C (), es
j%:./

i i N , == .
‘jtw' ]) (X) I'Q-/ F] {x>v

12 upper semicontinuous.

b} If the m-mappings Fi:X > C{Y) are closed and N F{xj# 2 Vx&X, then the intersection
AFX—-C (V) is closed. e’

s

¢} Suppose the m-mapping Fg:X » C(Y) is closed, the m-mapping F;:X - K(Y) is lower semi-
continuous, and Fo(x)NF{X)s5 @ VxeX. Then the intersection FoNF.: X K (Y)is upper semi-
continuous.

1.2.26. Example. Suppose m-mappings 5, Fyi|—x, nif—»R? are c:fined by the following
reiations:

Fi(t)=1x=1{(x1, xo) [ xI-Fx2<1, x>0},

.Fg{f}=:{x:=(x1, JCQ‘}i)Cl:}\‘COS t, ,?CQ—':)\:Sirlt; “"i<?‘w~"‘l§‘§jy
Although both these m-mappings are continuous and Fy(H)\Fy(f)5£J for any f€l—n, nl, the m-mapping
FiNF, is not lower semicontinuous.

This example shows that the intersection of lower semicontinuous mappings need not be
lower semicontinuous.

Let X, Y, Z be topological spaces.

1.2.21. THEOREM. a) If the m-mappings F,:X - P(Y), F,:Y > P(Z) are upper (lower) semi-
continuous, then their composition

(Fi o Fo) (x) =F(Fo(x))
is upper (lower) semicontinuous.

b) If the m-mapping F,:X » K(Y) is upper semicontinuous and the m-mapping F,:Y - C(Z)
is closed, then their composition ¥, ¢ F,:X » C(Z) is closed.

Let X be a topological space, and let Y be a topological vector space.

1.2.22. THEOREM. a) If the m-mappings F,, F,:X » P(Y) are lower semicontinuous, then
their sum F, + F;:X > P(Y), (Fo+F1) (x)=Fo(x)+F,(x) is lower semicontinuous.

b} If the m-mappings F, F,:X - K(Y) are upper semicontinuous, then their sum F, + F,:
X » K(Y) is upper semicontinuous.

1.2.23. THEOREM. o) If the m-mapping F:X » P(Y) is lower semicontinuous and the func-
tion f: X—R is continuous, then the product f:F:X > P(Y) :

(F-F) (x) =[(x) - F(x)

is lower semicontinuous.

b) If the m-mapping F:X - K(Y} is upper semicontinuous and the function f:X—R is con-
tinuous, then the product f-F:X » K(Y} is upper semicontinuous.

Let Y be a complete, locally convex space (les).

1.2.24. THEOREM. If the m-mapping F:X + K(Y) is upper (lower) semicontinuous, then the
convex closure o FiX » Kv(Y)

co FY(xy=co(F (x))
is upper {lower)} semicontinucus.

In conclusion, we present an assertion called the maximum theorem or the principle of
continuity of optimal solutions which plays an important role in applications of multivalued
mappings in game theory and mathematical economics.

1.2.25. THEOREM. Let Y, X be topological spaces,. let &:X » K(Y) be a continuous m-
mapping, and let f:X x Y —-R be a continuous function. Then the function ¢:X—>R,
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9 (x)= max f (x, §)

vEox)
is continuous, and the m-mapping F:X - K(Y)
F(x)={ylye®(x}, f(x, ) =9 (x}}

is upper semicontinuous.

3. Continuous Sections and Single-Valued Approximations of m-Manpings

Let X, Y be topoclogical spaces, and let £:X » Y be an m-mapping.

1.3.1. Definition. A continuous, single-valued mapping f:X » Y is called a continuocus
section of an m-mapping F if

f(x)€F (x)
for all x6X.
The existence of continuocus sections is closely comnected with lower semicontinuity of

a multivalued mapping. The following assertion characterizes this fact.

1.3.2. THEOREM. Let F:X » P(Y) be an m-mapping. If for any points x€X and y6F(x}
there exists a continuous section f:X + Y of the m-mapping F such that f(x) = y, then F is
a lower semicontinuocus m-mapping.

Michael's theorem is one of the basic results of the theory of continuous sections which
has found many applications.

1.3.3. THEOREM. The following properties of a T,-space X are equivalent:

a) X is paracompact;
b) if Y is a Banach space, then each lower semicontinuous m-mapping F:X » Cv(Y) has a
continuous section,

The proof of Theorem 1.3.3 is based on the following assertion.

1.3.4, LEMMA., Let X be a paracompact space, and let Y be a normal space; let F:X >
Cv(Y) be a lower semicontinuous m-mapping; then for any € > 0 there exists a continuous
single-valued mapping £c:X > Y such that [.(x) €U, (F(x)) for any x€X.

This mapping f. is naturally called an e-section of the m-mapping F.

There are many examples which show that the conditions of completensss of the space V,
closedness and convexity of the range of the m-mapping ¥, and the condition of lower semi-
continuity of this mapping are essential for the existence of a continuous section. However,
it is obvious that there =xist m-mappings which are not lower semicontinuous but have a con-
tinuous secticn. We shall consider the problem of the existence of a continuocus section in
terms of the local structure of m-mappings (see [22]).

pact subset of the Banach space E, and let
F:X » Kv(Y) be some m-mapping. We set F*(x)=U,(F{(x)})1Y. For each point %€X we define the
set L(F)(x,) by the rule

Let X be a metric space, Y be a convex comp

L=, (4 {0 FR)

>0 (620 LrGUs(x0)

1.3.5. THEOREM. In order that an m-mapping F:X - Kv{(Y) have an e-section for any
€ > 0 it is necessary and sufficient that L{F)}(x,) # @ for any x€X.

We remark that nonemptiness of the set L{G){x) for any x6X does not yet guarantee the
presence of a continuous section of an m-mapping F.

We consider iterations of L:
LOFYy=F, L"{Fy=L{LYF, n=l

We continue this process for each transfinite number of first type, while for & transfinite
number of second type we set

Y LHFY (=)= L°(F) ().

e et
: 3
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