
induced by this topology is denoted by xK(X).  The spaces • and • are defined simi- 
larly. 

1.1.2. The Lower Semifinite Topology. The Space Ic(X). An open prebasis of this 
topology is formed by the set C(X) \ C(X \ U), where U runs through the collection of all 
open subsets of the space X. This is the weakest topology in which the sets C(F), where F 
is closed in X, are closed. The set C(X) equipped with this topology is denoted by Ic(X). 
The spaces IK(X), ICv(X), IKv(X) are defined similarly. 

1.1.3. The Exponential ToDology. The Space Expc (X). An open prebasis of this topology 
is formed by the family of all subsets C(U) and all subsets C(X) \ C(X \ U), where U is open 
in X. The set C(X) equipped with this topology is denoted by ExPc(X). The spaces ExPK(X), 
EXPCv(X), EXpKv(X) are defined similarly. 

1.1.4. The Hausdorff Metric. The Space MCb(X). Let (X, p) be a metric space; Cb(X) 
denotes the collection of all nonempty, closed, bounded subsets of X. For At, A26Cb(X) let 

h(A~, A~)=inf{ele~0, A~cU,(A~), A2cU~(AO}, 

where UE(A i) is an ~-neighborhood of the set Ai; i = i, 2. 

The function h satisfies all the axioms of a metric on Cb(X) and is called the Hausdorff 
metric; the metric space (Cb(X), h) is denoted by Mcb(X). 

In the case where X is a compact metric space the topology generated by the Hausdorff 
metric on Cb(X) is equivalent to the exponential topology on this set. 

2. Continuity of Multivalued Mappings. Some Operations on 

Multivalued Mappings 

A multivalued mapping F of a set X into a set Y is a correspondence assigning to each 
point x6X a nonempty subset F(x) c y called the image of the point x, i.e., this is a single- 
valued mapping F:X + P(Y). Henceforth any mapping F:X + P(Y) is called an m-mapping. 

Let X, Y be topological spaces. 

1.2.1. Definition. An m-mapping F:X + P(Y) is called upper semicontinuous at a point 
x6X if for any open neighborhood V of the set F(x) there is an open neighborhood U of the 
point x such that F(U) c V. 

An m-mapping F:X § P(Y) is upper semicontinuous if it is upper semicontinuous at each 
point X6X 

We introduce the following notation: 

ru ~ (D)={xCX IF (x) c D } ,  

FZ ~ (D)----{x6 X I F (x) n m @ Q }. 

1 . 2 . 2 .  THEOREM. The f o l l o w i n g  c o n d i t i o n s  a r e  e q u i v a l e n t :  

( a )  an m-mapping  F i s  u p p e r  s e m i c o n t i n u o u s ;  

( b )  f o r  any  open V c y t h e  s e t  F $ i ( v )  i s  open in  X; 

( c )  f o r  any  c l o s e d  W c y t h e  s e t  F:Z(W) i s  c l o s e d  in  X; 

(d )  f o r  any  D c y we h a v e  g : l ( D )  z g : i ( D ) .  

1 . 2 . 3 .  THEOREM. An m-mapping F:X § C(Y) i s  u p p e r  s e m i c o n t i n u o u s  i f  and o n l y  i f  i t  i s  
c o n t i n u o u s  as  a mapping  i n t o  • 

1.2.4. Definition. An m-mapping F:X + P(Y) is called lower semicontinuous at a point 
X6X if for any V c y such that:F(a)NV~=~, there is an open neighborhood U of the point x 
such that F(x')nV~=~ for any x'6U. An m-mapping F:X + P(Y) is called lower semicontinuous 
if it is lower semicontinuous at each point xEX. 

1.2.5. THEOREM. The following conditions are equivalent: 

(a) an m-mapping Y is lower semicontinuous; 

(b) for any open V c y the set FIi(V) is open in X; 

(c) for any closed W c y the set F@i(w) is closed in X; 
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(d) for any D c y we have F$1(D)cF$1(D); 

(e) for any A c X we have F(A)cF{A). 

1.2.6o THEOREM. An m-mapping F:X + C(Y) is lower semicontinuous if and only if it is 
continuous as a mapping into Xc(Y). 

1.2.7. Definition. If an m-mapping F:X § P(Y) is upper and lower semicontinuous, then it 
is called continuous~ 

1.2.8. THEOREM. An m-mapping F:X + C(Y) is continuous if and only if it is continuous as 
a mapping into Expc(Y). 

1.2.9o Definition. An m-mapping F:X § C(Y) is called closed if its graph 

r ~  = {(x, v)~X • Y I VeF (x)} 

is a closed set in X • Y. 

1o2.10. THEOREM. The following conditions are equivalent~ 

a) an m-mapping F is closed; 

b) for any pair xEX, FEZ such that y~F(x),there exist neighborhoods U(x) of the point x 
and V(y) of the point y such that F(U(x))nV(~)=~; 

c) for any filters {x=}~X, {9~}cY such that x~-~x, 9~F(x~), 9~-~y, we have 96F(x). (In the 
case of metric spaces it suffices to consider ordinary sequences.) 

There is a close relation between closed and upper semicontinuous m-mappings. 

1.2.11. THEOREM. If an m-mapping F:X + C(Y) is upper semicontinuous and the space Y is 
regular~ then F is closed. If an m-mapping F has compact range, F:X + K(Y), then in this 
assertion the condition of regularity of Y can be relaxed: it suffices to require that it be 
Hausdorff. 

1.2.12. THEOREM. If F:X + K(Y) is a closed locally compact m-mapping~ then it is upper 
semicontinuous. 

We note the following properties of closed and upper semicontinuous m-mappings. 

1.2.13. THEOREM. If an m-mapping F:X § C(Y) is closed and AEK(X), then F(A)~C(Y) 

In the case where Y is a metric space it is possible to give the following simple cri- 
teria for the various types of continuity of m-mappingso 

1.2.15. THEOREM. For upper (lower) semicontinuity of an m-mapping F:X § at a point 
xEX it is necessary and sufficient that for any E > 0 there exist a neighborhood U(x) of the 
point x such that F(x ~) c U~(F(x)) [respectively, F(x) c U~(F(x')] for all x:~U(x). 

I~176 Definition~ An m-mapping F:X ~ Cb(Y) is called continuous in the Hausdorff 
metric if F is continuous as a mapping into the metric space (Cb(Y), h). 

1o2.17. THEOREM. An m-mapping FIX § K(Y) is continuous if and only if it is continuous 
in the Hausdorff metric. 

Some operations on multivalued mappings and the properties of continuity connected with 
them are described below. 

Let X, Y be topological spaces; let {F7}:~:, FT:X-+P (Y) be some family of m-mappings. 

1.2.18. THEOREM. a) Suppose the m-mappings Fj are upper semicontinuouso If the set 
of indices J is finite, then the union of m-mappings U Fj:X--~P(Y), 

( U Fj)(x)= U Fj(x), 
:G: :E J 

is upper semicontinuous. 

b) Suppose the m-mappings Fj are lower semicontinuouso 
semicontinuous. 

c) Suppose the m-mappings Fj:X + C(Y) are closed~ 
then the union U F/X-+C(Y) is closed. 

7E: 

Then the union U Fj is lower 
:E: 

If the set of indices J is finite, 
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1.2.1~. 
the set of ~.ndi~es J is finite, the space Y as r~ormai, ant 
e::~section of m-mappings ~ J~7-+ ~. (2), 

/@ 

THEOREM. a) Suppose ~c~e ~-map>ings Fj :X e Ci~ ~) are upp~r semicontinuous If 

VN6Af, then the i~ 

~.~ upper semicontinuous. 

b) If the m-mappings Fj~X + C(Y) are closed and R Fj(x)~.-~:O VxCX, then the intersectlon 
F T : X - > C ( Y  ) is closed. J~ 

c) Suppose the m-mapping F0~X + C(Y) i~ closed, the ~-mapping FI~X + K(Y) is lower semi- 
c~tinuous, and Po(~)~F:(x)@~ u The~ the intersection: F0~F,:~-K(Y) is upper semi- 
continuous. 

Exam ip_~ Suppose m-mappings #"i, F2:[--~, ~i-~e are C~ined by the following 1.2.20. 
relations: 

F2 (~) = {x == (x~, x~) [ x1 = ~ cos {, x2 --= ~ sin t~ --- 1 ~ X ~: i }. 

A l t h o u g h  b o t h  t h e s e  m - m a p p i n g s  a r e  c o n t i n u o u s  and Fi(t)nF2(t)#~ f o r  any  t~[ - -a ,  M, t h e  m-mapp ing  
F,nF2 is not lower semicontinuous. 

This example shows that the intersection of lower semicontinuous mappings need not be 
lower semicontinuous. 

Let X, Y, Z be topological spaces. 

1'.2.21. THEOREM. a) If the m-mappings F0:X + P(Y), FI:Y + P(Z) are upper (lower) semi- 
continuous, then their composition 

(F1 o F0) (x) =F1 (F0 (x)) 

i s  u p p e r  ( l o w e r )  s e m i c o n t i n u o u s .  

b)  I f  t h e  m - m a p p i n g  F0 :X  + K(Y) i s  u p p e r  s e m i c o n t i n u o u s  and  t h e  m-mapp ing  F I : Y  + C(Z) 
i s  c l o s e d ,  t h e n  t h e i r  c o m p o s i t i o n  E a o F0 :X ~ C(Z) i s  c l o s e d .  

Let X be a topological space, and let Y be a topological vector space. 

1.2.22. THEOREM. a) If the m-mappings F0, FI:X + P(Y) are lower semicontinuous, then 
their sum F 0 + FI:X + P(Y), (F0+F1)(x)=F0(x)+F1(x) is lower semicontinuous. 

b) If the m-mappings F0. Fl:X ~ K(Y) are upper semicontinuous, then their sum F 0 + F:: 
X § K(Y) is upper semicontinuous. 

1.2.23. THEOREM~ a) If the m~ F:X + P(Y) is lower semicontinuous and the func- 
tion f: X-+R is continuous, then the product f'F:X ~ P(Y) 

(f-F) ( x ) = f ( x ) . F ( x )  

is lower semicontinuous. 

b) If the m-mapping F:X -> K(Y) is upper semicontinuous and the function [:X-+R is con ~ 
tinuous, then the product f'F:X + K(Y) is upper semicontinuous, 

Let Y be a complete, locally convex space (its). 

1.2.24. THEOREM. If the m-mapping F:X + K(Y) is upper (lowe~) semicontinuous, then the 
convex closure ~L-6F:X § Kv(Y) ~ 

(~Z P) ~x) = & (F (x)) 
is upper (lower) semicontinuous. 

In conclusion, we present an assertion called the maximum theorem or the principle oi 
continuity of optimal solutions which plays a~ important role in applications of multivalued 
mappings in game theory and mathematical economics. 

1.2.25. THEOREM. Let Y, X be topological spaces, let ~:X + K(Y) be a continuous m- 
mapping, and let f:X x y --~R be a continuous function. Then the function ~:X-*R, 
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q~ ( x ) =  max / (x, v) 

is continuous, and the m-mapping F:X e K(Y) 

F(x) = {v l .y~(x) ,  t(x, y) =~(x)}  
is upper semicontinuouso 

3. Continuous Sections and SinKle-Valued Approximations of m-MaD i ~  

Let X, Y be topological spaces, and let f:X + Y be an m-mapping~ 

1.3oi. Definition. A continuous, single-valued mapping f:X § Y is called a continuous 
section of an m-mapping F if 

t(x)~e(x) 
for all xEX. 

The existence of continuous sections is closely connected with lower semicontinuity of 
a multivalued mapping~ The following assertion characterizes this fact. 

1.3.2. THEOREM. Let F:X + P(Y) be an m-mapping. If for any points x6X and y6f(x) 
there exists a continuous section f:X + Y of the m-mapping F such that f(x) = y, then F is 
a lower semicontinuous m-mapping. 

Michael's theorem is one of the basic results of the theory of continuous sections which 
has found many applications. 

1.3.3. THEOREM. The following properties of a T1-space X are equivalent: 

a) X is paracompact; 

b) if Y is a Banach space, then each lower semicontinuous m-mapping F:X + Cv(Y) has a 
continuous section~ 

The proof of Theorem 1.3.3 is based on the following assertion. 

1.3o4. LE~iMA. Let X be a paracompact space, and let Y be a normal space; let F:X 
Cv(Y) be a lower semicontinuous m-mapping; then for any s > 0 there exists a continuous 
single-valued mapping fs:X + Y such that f~(x)~U~(f(x)) for any x~X. 

This mapping fE is naturally called an s-section of the m-mapping F. 

There are many examples which show that the conditions of completeness of the space Y, 
closedness and convexity of the range of the m-mapping F, and the condition of lower semi- 
continuity of this mapping are essential for fihe existence of a continuous section. However, 
it is obvious that there exist m-mappings which are ~ot lower semicon~inuous but have a con- 
tinuous section. We shall consider the problem of the existence of a continuous section in 
terms of the local structure of m-mappings (see [22])~ 

Let X be a metric space, Y be a convex compact subset of the Banach space E~ and let 
F:X -> Kv(Y) be some m-mapping. We set F~(x) =U~(F(x))NY. For each point xo~X we define the 
set L(F)(x0) by the rule 

' ~>ot~>o,xCu~xo~ 

!.3.5. THEOREM. In order that an m-mapping F:X--~ Kv(Y) have an s-section for any 
s > 0 it is necessary and sufficient that L(F)(x0) x ~ for any ~06X. 

We remark that nonemptiness of the set L(G)(x) for any x6X does not yet guarantee the 
presence of a continuous section of an m-mapping F~ 

We consider iterations of L: 

LO(F)=F, L~(F)=L(L~-'{F)), ~ j . I .  

We continue this process for each transfinite nu~nber of first type, while for a transfinite 
nt,,mber of second type we set 

~ i  ~' ~'/ L ~ (F) (x)--- ~~ L ~ (~) (x). 
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